

Follow-Me Cart

Diego Fajardo Frances González Sylvia González

Outline

- Problem Statement
- Proposed Solution
- Design by Modules
- System Hardware Overview
- System Software Overview
- Results
- Budget
- Future Work
- Prototype Pictures

What's the problem?

What do they have in common?

The Follow-Me Cart

- Identifies user uniquely
- Follows user
- Avoids stationary obstacles
- Sounds an alarm when:
 - User is not detected

User Identification

- Radio frequency transmitter/receiver
 - Sends/receives Identification number (16 bits)
- Communication using UART
 - 1.6kbps

User Location

Phase Accordance Method

- Ultrasound transmitter sends sine waves which meet at an epoch
- Receivers get signal
 - Time of flight
 - Distance
 - Angle

Cart Movement

- Remote Control Car (RC)
- Two servo motors
 - Steering
 - Throttle

- Period of 20ms
- Duty cycle
 - 5% left or forward
 - 10% right or backward

Obstacle Detection

- Infrared proximity sensors
 - Provide obstacle distances for Obstacle Avoidance
- ADC output vs. distance is exponential
 - Data linearization:

$$\frac{1}{\text{Distance} + k}$$
 vs. ADC_{out}

Adjust k for linear correlation

Obstacle Avoidance

- 35 sectors: 5 degrees each
- Infrared sensors provide obstacle distances
- Fuzzy logic rules determine danger sectors

- User Location provides target angle (sector)
- Steering angle is determined using danger sectors and target sector

Movement Decision

- Obstacle Avoidance provides steering angle
- User Location provides user distance
- Decisions:
 - Adjust speed according to user distance
 - Turn according to steering angle
 - No data provided → Stop, Turn on alarm

Transmitter Schematic

RC Car Schematic

Software Diagram

Were we on time?

- User Identification re-design led to a significant delay with User Location
- Problem Solved through:
 - Resource re-allocation
 - Paralleled tasks
 - Extra working hours
- Project was completed on time

It works!

- Avoids obstacles 95% of the times tested
- Small user location calculation errors
 - Distance: +/- 7cm
 - Angle: +/- 5 degrees
- Integrated system
 - Follows user and avoids obstacles correctly for about 85% of the time.

How much did it cost?

Total Project Cost	
Total Personnel Cost:	\$20,785.56
Total Materials Cost:	\$315.74
Subtotal Project Cost:	\$21,101.30
Overhead (110%):	\$23,095.12
Total Project Cost:	\$44,312.73
Proposed Project Cost:	\$44,090.68
Difference:	\$222.00

Future Work

- Add infrared sensors to reduce blind spots
- Enable cart to recognize dead ends
- Incorporate cryptography to prevent thirdparty tracking
- Physical and mechanical design of the cart

Follow-Me Cart Prototype

References

- Y. D Kwon and Jin S. Lee. "An Obstacle Avoidance
 Algorithm For Mobile Robot: The Improved Weighted
 Safety Vector Field Method". 1995, IEEE 10th International
 Symposium on Intelligent Control.
- Ayumu Kaneko, Yusuke Sugano, Koji Yatani and Masanori Sugimoto. "Fast and Accurate Positioning Technique Using Ultrasonic Phase Accordance Method". Graduate School of Frontier Sciences University of Tokyo.

